

This report is the result of studies performed at Lincoln Laboratory, a federally funded research and

development center operated by Massachusetts Institute of Technology. This material is based on

work supported by the Department of Defense under Air Force Contract No. FA8721-05-C-0002

and/or FA8702-15-D-0001. Any opinions, findings and conclusions or recommendations expressed

in this material are those of the authors and do not necessarily reflect the views of the Department

of Defense.

© 2016 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Delivered to the U.S. Government with Unlimited Rights, as defined in DFARS Part 252.227-7013 or 7014 (Feb

2014). Notwithstanding any copyright notice, U.S. Government rights in this work are defined by DFARS

252.227-7013 or DFARS 252.227-7014 as detailed above. Use of this work other than as specifically authorized

by the U.S. Government may violate any copyrights that exist in this work.

This page intentionally left blank.

EXECUTIVE SUMMARY

Web-based attacks are a prominent class of cyber attacks in today’s networks. They are
attacks that violate the security properties of web servers, web applications, web portals, web
browsers, and web services. They can damage confidentiality, integrity, and availability of systems
and networks and pose a significant threat to both systems connected to open, public networks (i.e.,
the Internet) and those that reside on closed, private networks. In their impact and sophistication,
web-based attacks are on par with host-based attacks. Most web-based attacks are a form of the
confused deputy problem in which one party is fooled about the identity or authority of another
party. Virtually all web-based attacks are also a form of an input validation problem where the
target fails to properly check a potentially malicious, user provided input.

Traditionally, simple defenses against web-based attacks, such as input sanitization, provide
little protection against a motivated attacker with simple evasion capabilities and often have im-
practically high false positive and false negative rates. More effective defenses in this domain often
either require significant modifications to servers and infrastructures, thus violating the federated
model of such networks, or they impose high computational or operator overheads. As a result,
the domain of web-based attacks requires significant research and development efforts to provide
practical, effective defenses.

In this report, we highlight some of the most important deployment challenges and gaps
related to web-based defenses, which can be used to guide future research and development in this
area.

iii

This page intentionally left blank.

TABLE OF CONTENTS

Page

Executive Summary iii

List of Tables vii

1. INTRODUCTION 1

1.1 Goals 1

1.2 Scope 1

2. METHODOLOGY 3

2.1 Categorization of Web-based Attacks 3

2.2 Attack Prioritization Process 3

2.3 Gap Discovery Process 5

2.4 Gap Selection Process 5

2.5 Gap Treatment and Classification Process 5

3. GAPS AND RESEARCH DIRECTIONS 9

3.1 Lack of effective defenses to combat Cross-Site Scripting (XSS) 9

3.2 Lack of effective defenses to combat Code Injection and Code Reuse 13

3.3 Lack of effective defenses to combat Session Fixation 15

3.4 Lack of effective defenses to combat Privilege Escalation 17

3.5 Lack of effective defenses to combat Logic Vulnerabilities 20

3.6 Lack of effective defenses to combat File Inclusion 22

3.7 Lack of effective defenses to combat Drive-by Downloads 23

3.8 Lack of effective defenses to combat Clickjacking 25

3.9 Lack of effective defenses to combat Plug-in Attacks 27

4. SUMMARY AND CONCLUSION 29

Appendix A: Summary of Deployment Gaps 31

References 33

v

This page intentionally left blank.

LIST OF TABLES

Table

No. Page

1 Prioritization of Attack Areas 4

A.1 A Summary of Web-Based Countermeasures and Their Deployment Gaps 31

vii

This page intentionally left blank.

1. INTRODUCTION

In this report, we analyze and enumerate the gaps that exist in the area of countermeasure
applications. Countermeasure applications refer to conducting and applying research to prevent
adversarial activity on U.S. Government (USG) networks through the application of defensive
techniques. Cyber Network Defense (CND) activities often include actions such as deterrence,
detection, protection, and reaction to attacks.

1.1 GOALS

The main focus of this report is on protection, i.e., stopping or mitigating the impact of
cyber attacks by applying defensive techniques prior to their occurrence. Of particular interest
are defensive techniques that can mitigate attacks that use known and unknown vulnerabilities of
known types (i.e., zero-day attacks). Attacks of unknown types are out of the scope of this analysis
due to the inherent difficulty to reason about them.

1.2 SCOPE

In cyber security, some domains are better understood than others. For example, while the
domain of memory corruption attacks is well studied with a rigorous taxonomy [41], the domain of
web-based attacks is understudied. As a result, for this report, we limit the scope of our study to
web-based attacks.

Web-based attacks are those that violate the security policies of websites, web applications,
and web services. We simply refer to all of the web-based components and systems as web services.
W3C defines a web service as “a software system designed to support interoperable machine-to-
machine interaction over a network” [44]. Web services may be accessible over a public network
(e.g., DISA’s webpage) or they may be isolated in a closed, private enclave (e.g., an information
portal accessible over SIPRNet). Web services often use well-known coding languages (e.g., PHP,
JavaScript, SQL, and Ruby), markup languages (e.g., XML, HTML, XACML, WSDL, and SAML),
and protocols (e.g., HTTP, HTTPS, and SOAP). Web services often have a client-server model in
which the content is mainly provided by the server, but the peer-to-peer model is also used in some
web services.

1

This page intentionally left blank.

2. METHODOLOGY

2.1 CATEGORIZATION OF WEB-BASED ATTACKS

Web-based attacks are those that violate the confidentiality, integrity, and/or availability of
web services. Although similar in their concepts and impact, web-based attacks are distinguished
from other domains of cyber attack such as memory corruption, by their abstraction layer. Web-
based attacks work at the abstraction layer of web applications, web protocols, and web languages.

At the highest level of abstraction, most web-based attacks, with the exception of some forms
of drive-by downloads [26], are a form of the confused deputy problem. The confused deputy problem
refers to attacks in which one party is fooled about the identity or authority of another party. To
the best of our knowledge, all web-based attacks are also an input validation problem where user
provided input is not checked or sanitized properly.

There are two major classes of defenses against web-based attacks: exploit defenses and
payload defenses. Exploit defenses try to stop the exploitation of a web-based vulnerability. For
example, character escaping techniques [15] to mitigate SQL injection attacks are a form of exploit
defense because, if done properly, they can stop exploitation of the SQL injection vulnerability.
On the other hand, payload defenses try to mitigate the impact of the attack after the initial
exploitation. For example, iFrame isolation techniques [7] assume that cross-site scripting (XSS)
exploits can happen, so they try to limit the compromise to a single iFrame.

Categorizing web-based defenses beyond these major classes is challenging. Categorization
based on the mechanism can be misleading. For example, input sanitization is used in numerous
defenses to mitigate different types of web-based attacks, but depending on the type of attacks
mitigated, those defenses can have different properties. For instance, an input sanitization defense
applied to a web server to mitigate session fixation attacks can have a very low false positive,
whereas input sanitization applied to the web browser to mitigate client-side XSS attacks may
have a very high false positive rate. Categorization based on the side of defense (client-side vs.
server-side) can also be misleading. For example, different server-side defenses may protect against
incongruent types of web-based attacks with varying properties.

One type of categorization that can form a more rational basis for comparison of web-based
defenses is based on the attack types mitigated. There are relatively few types of web-based
attacks, which make this categorization simpler. In addition, defenses mitigating the same attack
have the same ultimate goal, which allows a better comparison of their properties. As a result, in
this report, we use an attack-based categorization to study the gaps in web-based defenses. The
attack types studied in this report are: Cross-Site Scripting (XSS), Code Injection and Code Reuse,
Drive-by Downloads, Clickjacking, Logic Vulnerabilities, Session Fixation, File Inclusion, Privilege
Escalation, and Plugin Attacks.

2.2 ATTACK PRIORITIZATION PROCESS

One possibility for prioritizing research efforts is to look at the risk posed by each attack
area. For a quantitative computation of risk we need to understand the likelihood and impact

3

TABLE 1

Prioritization of Attack Areas

Cenzic WHID OWASP Merged Priority

XSS 1 2 3 High

Code Injection and Reuse 4 1 1 High

Session fixation 3 3 2 High
Privilege escalation 2 6 7 Med

Logic vulnerabilities 2 4 2,5,7 Med

File inclusion N/A 5 4 Med

Drive-by downloads N/A N/A 10 Low

Clickjacking N/A 7 N/A Low

Plug-in attacks N/A N/A 9 Low

of attacks occurring in each area. Reliable and well-classified data sources are lacking for the
likelihood component and even more so for the impact component, which is somewhat unique to
each individual organization. Most data sources contain high levels of subjectivity in how attacks
are classified and often report attacks by types that are overlapping or are overly abstract. This
makes them challenging and often misleading to map to particular use cases such as the attack
areas described above. In an effort to minimize the deficiencies inherent in any individual data
source we have examined multiple recent web attack sources, mapped them to our attack areas,
and averaged their prioritizations to come up with an overall prioritization level.

We examined three sources: the annual Cenzic vulnerability trends report [8], the Web Hack-
ing Incident Database (WHID) [39], and the OWASP Top 10 Ranking [28]. The Cenzic report
provides some insight into the likelihood of attack by providing the number of vulnerabilities per
attack type as reported via a web application vulnerability detection product. The WHID reports
incidents of targeted attacks that have been publicly reported. As this database is specifically
filtered to include targeted attacks it may provide some information not only about likelihood but
also about impact given that targeted attacks may be more relevant and impactful for the organiza-
tions under consideration. Finally, the OWASP ranking provides a consensus of the top 10 attacks
as reached by experts in the web security community. Being derived from the experience of subject
matter experts, it incorporates subjective information about both the likelihood and impact.

While not strictly agreeing upon an ordering, the sources were generally in agreement about
whether the attacks were of high, medium, or low priority. Table 1 lists these priorities by attack
type and shows the relative ranking for each data source. Some data sources did not classify attack
types in a way that mapped cleanly to the attack areas described above, as indicated by N/A in
the table.

4

2.3 GAP DISCOVERY PROCESS

For the purposes of this study, we focus on the open literature and publicly known defensive
techniques. We reviewed papers and studies, mainly from the prominent security conferences such
as the IEEE Symposium on Security and Privacy (Oakland), Network and Distributed Systems
Security (NDSS), ACM Computers and Communications Security (CCS), USENIX Security Sym-
posium, Annual Computer Security Applications Conference (ACSAC), and the Symposium on
Research in Attacks, Intrusions, and Defenses (RAID).

We initially surveyed the titles and abstracts for the past four years of each conference's
proceedings. We then down-selected this very large list of papers based on their relevance to attack
analysis. We read the papers from this refined list and extracted any relevant gaps based upon our
own experience and the context of the paper and the state research contribution.

We have also incorporated publication, reports, and information from other sources such as
white papers and threat reports, as necessary.

2.4 GAP SELECTION PROCESS

The gap selection process was performed during team meetings and began with individual
team members independently determining if a gap was worthy of carrying forward. A majority
vote was then used to determine whether to keep it as a gap or not.

2.5 GAP TREATMENT AND CLASSIFICATION PROCESS

2.5.1 Types of Gaps

There are three major types of gaps in existing cyber defense:

• Technology Gap: an effective defense does not yet exist against a type of attack.

• Deployment Gap: defenses have been proposed or implemented against an attack type (open
source or commercial), but all of the existing defenses have impracticalities that impede their
adoption. For example, if all known defenses against an attack type have unacceptably high
overhead or false positive rates, a deployment gap exists for such defenses.

• Practice Gap: practical and effective defenses exist in the community, yet they are not adopted
widely, perhaps because of the lack of awareness or incentives.

In this report, we primarily focus on deployment gaps. Note, however, that the distinction
between these areas is not well established and there are many gray areas. For example, the amount
of acceptable overhead varies from system to system, which means that a deployment gap in one
system can be interpreted as a practice gap in another. Moreover, each deployment gap eventually
points to a technology gap. For example, knowing that all existing defenses against an attack have
high overhead (a deployment gap) points to the fact that faster defenses have to be developed
against that attack type (a technology gap).

5

2.5.2 Deployment Challenge Categorization

Deployment challenges are weaknesses or impracticalities in defensive techniques that impede
or disincentivize their usage. Deployment challenges of web-based defenses can be categorized into
three major classes: challenges related to protection, overhead, and compatibility.

A. Protection

1. Effectiveness: captures the strength of the security policy enforced by a defensive technique.
If a defense can easily be evaded by adapting the attack without violating the security policy
enforced by the defense, the defense has low effectiveness. Otherwise, if most malicious
attacks necessarily violate the security policy (and therefore are stopped by the defense), the
defense has high effectiveness.

2. False Positive Rate: is the rate at which benign operations are incorrectly flagged as
violations by the defense. A low false positive rate is very important for practical adoption
of a defense. Defenses with high false positive rates can create the habit of ignoring alarms
for the user which, in turn, negatively impacts the security of the system in cases where
attacks are correctly detected.

3. False Negative Rate: is the rate at which attacks are incorrectly presumed benign by the
defense. High false negative rates are an indication of a weak defense. Note that effective-
ness mainly captures the resilience of a defense against evasion attempts, whereas the false
negative rate is the amount of intrinsically missed attacks. In both cases, the security policy
enforced by the defense is not violated.

B. Overhead

1. Performance: is the defense’s effect on speed as caused by processing or performing a task.
Low performance overhead is crucial in widespread adoption of defenses. Some studies argue
that an overhead of higher than 10% is considered unacceptable for practical adoption of
defenses [41].

2. Communication: is the additional communication that is incurred by the defense.

3. Human: is the amount of manual work necessary to operate the defense.

C. Compatibility

1. Source: is the defense’s ability to be applied to source code without manual modification.

2. Binary: is the defense’s ability to be applied to binaries without manual modification. Note
that techniques that require access to the source code are not binary compatible.

3. Infrastructure: is the defense’s ability to be applied to existing infrastructure such as
networking appliances, servers, and network architectures, without manual modification. For
example, a technique that runs an extra piece of code on the web server to secure it against
injection attacks is infrastructure compatible, while another one that requires modifications
to the enterprise gateway is not.

6

4. Federation: is the defense’s ability to be applied to a federation without controlling ev-
ery entity. The Internet, the World Wide Web, and even some closed networks consist of
independently owned and managed entities. In such an environment, it is important that
a defense can be applied effectively to a subset of the entities under a defender’s control.
A defense that can be applied to one side of the web services (often the client) supports
federation. Otherwise, if the defense has to be applied to both clients and servers for it to
be effective, it does not support federation because it requires control over both entities.

5. Modularity: is the defense’s ability to be applied to each module independently. In other
words, if the defense must be applied to every component of the system for it to work
properly, it is not modular. Otherwise, if it can be applied to some components, but not
others and still works properly, it is modular. An example of a modular technique is a
static code analysis technique that finds vulnerabilities in the code, because some modules
can be analyzed without the necessity to analyze all of them. An example of a non-modular
technique is a data tagging mechanism to implement taint tracking in the browser, because all
browser modules must be augmented with the mechanism; otherwise, the browser will crash.
For instance, if the HTML parsing module is augmented with tagging, but the JavaScript
module is not, the browser will crash.

We refer to these deployment challenges in the rest of the report using their numbers, e.g.,
A.2 refers to the false positive rate and C.4 refers to the federation support.

7

This page intentionally left blank.

3. GAPS AND RESEARCH DIRECTIONS

3.1 LACK OF EFFECTIVE DEFENSES TO COMBAT CROSS-SITE SCRIPTING
(XSS)

3.1.1 Attack Description

Cross-site scripting (XSS) vulnerabilities frequently top the list of web-based attacks [8]. XSS
vulnerabilities can occur whenever a web page allows for user input. In its simplest form, an XSS
vulnerability occurs when script is injected into a webpage for which it was not intended [35, 43].
Most, but not all, XSS vulnerabilities involve injection of JavaScript into webpages. According to
the Same Origin Policy, since the script comes from a trusted web application, the browser processes
the request, returns a response, and most importantly, does not flag an error. The consequences
of XSS vulnerabilities are diverse, but often lead to stolen credentials, unwarranted privileges, and
impersonation attempts. Related to XSS are other vulnerabilities such as cross-channel scripting
(XCS) and cross-site request forgery (CSRF). XCS is a special from of XSS where a channel, e.g.,
FTP, is used to inject an XSS exploit [6]. CSRF is a near opposite of XSS in that a malicious
site sends a request to an honest site via a trusted user; in this way, the attacker is now taking
advantage of the trust that the site has in the user [3]. Though these attacks are distinct from
XSS, they can be treated in a similar manner with respect to their prevention.

XSS attacks fall into two categories based upon the source of their incorrect code: server-
side (i.e., non-persistent (reflected) and persistent (stored) XSS vulnerabilities) and client-side (i.e.,
DOM-based, plug-in, and content sniffing XSS vulnerabilities) [7]. Once the script is maliciously
crafted and goes to the server, if the request is stored in the servers archive, the XSS vulnerabil-
ity is known as persistent (stored). If the server responds with the malicious code copied in the
response, the XSS vulnerability is known as non-persistent (reflected) [12]. DOM-based XSS vul-
nerabilities occur when script is injected into a DOM operation, such as document.write. Plug-in
XSS vulnerabilities occur when malicious script is inserted by plug-ins while content sniffing XSS
vulnerabilities occur when a file, e.g., an image or PDF file, is interpreted as a script file, with this
script file containing malicious code [7].

Common mitigations of XSS vulnerabilities include input validation/sanitization, regular ex-
pressions, character escaping, and client-side script disabling. Input validation or sanitization
techniques attempt to sanitize untrusted code that may contain malicious script. Regular expres-
sions are used to identify and remove malicious content from outgoing requests [24,40]. Character
escaping literally escapes special characters within the user input, thereby disallowing any code
execution. Lastly, script disabling is when the user disables scripts from running within their web
browser. These four common techniques are relatively simple to deploy and, at an intuitive level,
provide protection against XSS vulnerabilities. At the same time, they have their disadvantages.
For example, most websites require JavaScript and as such, script disabling often results in reduced
functionality of these websites. The use of character escaping and regular expressions results in
many false positives and false negatives (A.2, A.3). Sanitization is subject to the quality of its im-
plementation as developers may apply sanitizers in the wrong order, in the wrong context, or simply

9

not frequently enough [35]. More importantly, none of these traditional defenses are bypassable,
i.e., attacker’s can easily evade them (A.1).

Outside of these mitigation techniques is Content Security Policy (CSP), a protocol designed
to prevent XSS vulnerabilities by essentially creating a white list of sources that a webpage should
trust [12]. CSP enforces an access control policy on different constituents of a webpage. CSP
differs from the techniques that were presented previously as it is a protocol that must be followed,
not a tool or technique that is applied to a web browser, server, etc. Many modern web browsers
implement their own version of Content Security Policy, but CSP is only deployed by a small
fraction of websites [46].

3.1.2 Defense: Chrome’s XSS Auditor

Description Of Defense

XSS Auditor is similar to regular expression defenses in that it uses regular expressions to
identify malicious content. It defers from past approaches since it detects the malicious content
after the HTML is parsed and before it is passed to the JavaScript engine. In this way, content
that only becomes malicious after being parsed by the HTML parser can be caught before being
sent to the JavaScript interpreter where it is actually executed. If XSS Auditor detects injected
script, it replaces it with a benign value or removes it entirely. XSS Auditor is implemented in
Google Chrome [24].

Description of Deployment Gaps

Though promising, the XSS Auditor does not prevent XSS Vulnerabilities that do not pass
from the HTML parser to the JavaScript Interpreter, thereby limiting its scope and allowing at-
tackers an easy bypass route (A.1). As the XSS Auditor verifies injected code by confirming that
it is not in the request using string matching, if attackers craft the attack such that the request
and the injected code match, they can once again, bypass the XSS Auditor. This leads to a high
false positive and false negative rate (A.2, A.3). Lastly, XSS Auditor is only available in Google
Chrome (C.2) [24].

3.1.3 Defense: Script Separation

Description Of Defense

With respect to preventing server-side XSS vulnerabilities, especially for legacy web applica-
tions, one solution proposes to separate code and data such that all inline JavaScript is contained
in external files. Based on CSP, only JavaScript contained in these external files is executed [12].

Description of Deployment Gaps

10

As this solution only prevents server-side XSS vulnerabilities when used in combination with
other techniques, i.e., CSP, its effectiveness is limited (A.1). On top of that, this solution only
identifies 50-70% of inline JavaScript (A.1). This solution has only been tested on open source
web applications (A.1) and requires binary code to be rewritten on the server (C.1, C.4). Lastly,
overhead associated with this application is unclear (B.1) [12].

3.1.4 Defense: Training-Based Countermeasure

Description Of Defense

Using a two-step process (training and runtime auto-correction), ScriptGard aims to prevent
XSS and XCS vulnerabilities. During the training process, positive taint tracking is used to develop
a sanitization cache to map paths and the correct use of sanitizers. During the runtime auto-
correction phase, the sanitization cache is used to ensure the correct ordering of sanitization [35].

Description of Deployment Gaps

This solution only repairs sanitizers; it is not a complete mitigation tool, i.e., if the correct
sanitizers are not implemented or used to begin with, this solution is of no use (A.1). In addition,
this solution has only been implemented in Internet Explorer (C.2). Though the repair only occurs
in the second phase (runtime auto-correction), the training phase can sometimes result in overheads
of 175 times, thereby severly limiting this solution’s deployment (B.1). Lastly, developers are needed
to indicate the context in which sanitizers should be used, causing human overhead (B.3) [35].

3.1.5 Defense: Taint Tracking

Description Of Defense

Another solution to preventing XSS vulnerabilities includes tracking the flow of attacker-
controlled data and using HTML and JavaScript parsers to detect tainted data. Such a solution
has low false positive and false negative rates [40]. A similar solution to the prevention of DOM-
based XSS vulnerabilities relies on taint tracking in the JavaScript and DOM engines. After a
tainted string is passed to a sink, a report is generated and shown to the user [23].

Description of Deployment Gaps

Both of these taint tracking solutions only prevent DOM-based XSS vulnerabilities (A.1), and
they have only been implemented in open-source browsers (C.2). Extending it to other browsers
would require binary changes. Though these solutions have been tested with known DOM-based
XSS vulnerabilities, it is not known how well they perform against XSS attacks that are crafted
to evade these solutions (A.1) [23,40]. In addition, with respect to the taint tracking solution that
is implemented within the JavaScript and DOM engines, features designed to optimize the web
browser’s performance must be disabled, thereby indicating that this solution is not modular as

11

other modules must be modified in order for the solution to properly function (C.5) Lastly, the
overhead associated with this solution is unclear (B.1) [23].

3.1.6 Defense: iFrame Isolation

Description Of Defense

Taking a different approach, one solution to prevent XSS vulnerabilities is to separate
webpages into iFrames such that communication between different webpage sources is monitored.
Monitoring whether one iFrame tries to change the content of another iFrame limits XSS worm
propagation [7].

Description of Deployment Gaps

Though promising, this technique of iFrame isolation only prevents the spread of XSS vulner-
abilities, not damage associated with the XSS vulnerability (A.1). It also has only been developed for
social networking sites. Outside of this mitigation's effectiveness issues, it requires changes within the
browser, server, and infrastructure (C.1, C.2, C.3, C,4) [7].

3.1.7 Defense: Mutation-Based XSS (mXSS) Countermeasure

Description Of Defense

For a specific type of web-based attack, known as a mutation-based XSS (mXSS) vulnerability,
two solutions that utilize relatively simple techniques are identified. The first server-side solution
disallows special characters, appends a trailing whitespace to text, and utilizes percent encoding
for special characters. The second client-side solution overwrites access of particular commands,
i.e. innerHTML and outerHTML, such that they are treated and handled as XML [16].

Description of Deployment Gaps

The server-side solution requires code to be modified on the server (C.2, C.4). Though the
client-side solution does not require code modification, the end user may have to apply it, thereby
introducing much variability, and possibly overhead (B.3). The overhead associated with the server-
side solution is unclear (B.1). The client-side solution results in nearly a 30% increase for page-load
times and a 12% increase for user perceived page-load times (B.1) [16].

3.1.8 Research Direction

Many of the defenses designed to combat XSS suffer from problems with effectiveness (A.1),
performance overhead (B.1), and binary compatibility (C.2). Of particular importance is lack of
effective defenses in this domain as most current defenses are easily bypassable. Future research
in this area should focus on defensive techniques that are not easily evadable and that prevent all
stages of an XSS attack. This can be done by focusing on fundamental properties of XSS attacks

12

(i.e., the fact that the server’s identity is spoofed), rather than focusing on small artifacts of current
attacks (e.g., usage of special characters in the malicious input) that can be evaded by a medium-
low resourced attacker. Moreover, research should focus on designing more effective defenses for
different types of XSS attacks (persistent, non-persistent, and DOM-based). It is also desired that
future defenses for XSS attacks are binary compatible and exert little, if any, overhead.

3.2 LACK OF EFFECTIVE DEFENSES TO COMBAT CODE INJECTION AND
CODE REUSE

3.2.1 Attack Description

Traditionally, code injection has been a method of exploiting memory corruption vulnera-
bilities (e.g., a buffer overflow) in binary executables and libraries. Exploits could be crafted by
overwriting a function’s return address or a code pointer with the memory location of an attacker-
supplied payload containing executable code (e.g., shellcode) residing in a buffer on the stack.
However, with the adoption of a non-executable stack (NX bit or Data Execution Prevention),
such code injection attacks have been rendered ineffective, as this defense eliminates the ability
to execute attacker-supplied code on the stack. Code reuse attacks can defeat these defenses by
constructing attack payloads that combine code fragments that already exist within the binary’s
code segment. Examples of traditional code reuse attacks include return-to-libc [36], return-oriented
programming [32], and jump-oriented programming [5].

Web applications can also suffer from memory corruption vulnerabilities that enable code
injection and/or code reuse. However, the attack surface of web applications is much richer than
traditional binaries, as web applications are often written in one or more high-level interpreted
languages such as PHP, Perl, and/or SQL. While memory corruption bugs could exist within the
interpreter of these languages, an often easier route of attack is to directly inject code written in the
high-level language itself, often through an improperly validated input channel. For example, an
HTTP request parameter whose value is interpreted as part of a PHP statement may be vulnerable
to injection of arbitrary PHP code. Similarly, input parameters that are used to construct an
SQL statement may be vulnerable to SQL injection, where attacker-supplied inputs are passed
directly into an SQL statement without any input validation to ensure that the input contains
data, not code. Code injection attacks against web applications and their back-end databases have
the potential to impact the confidentiality, integrity, and/or availability of the web service.

More recently, code reuse attacks have been demonstrated within the context of PHP web
applications [13]. Code reuse attacks against PHP applications may be possible if an application has
an object injection vulnerability. The attacker injects an object into the web application through
an input channel such as an HTTP request parameter. Prior to injection, the attacker can set the
properties of the object in a manner to influence the data and control flow of the web application.
As such, these attacks are often called Property Oriented Programming (POP) attacks, and like
code injection attacks, can lead to the execution of arbitrary code within the web application.

Both code injection and code reuse attacks on web applications are made possible by improper
input validation. One defense for these attacks is simply to validate all inputs using existing APIs

13

that sanitize inputs. However, this general solution is expensive, as it requires the programmer to
find all instances of the input validation vulnerability and apply source-level changes to validate
the inputs. In addition, this solution may not be applicable to legacy web applications, for which
there is limited developer support. Consequently, contemporary research efforts have endeavored
to provide defenses against code injection/reuse attacks. We survey these defenses, along with their
respective obstacles to deployment, in the sections below.

3.2.2 Defense: Static Analysis-Based Detection

Description Of Defense

One approach to the detection of code reuse attacks in PHP web applications is to use
static analysis of the application’s source code to identify PHP object injection vulnerabilities [11].
One challenge of this approach is that most static analysis frameworks for PHP do not support
PHP’s object-oriented features, which are of particular importance to attacks that exploit PHP
object injection. This approach combines taint analysis, data flow analysis and an analysis of so-
called “magic methods” that are related to object-oriented programming (e.g., constructors and
destructors) to identify all PHP object injection vulnerabilities that may exist within a particular
web application.

Another approach applies static analysis to detect “second-order” vulnerabilities in web ap-
plications [10]. Second-order vulnerabilities occur when a malicious value is stored in a persistent
data store (e.g., in memory or a database) that can later be retrieved by that application. (This is
in contrast to injections where the input is instantly used to read from a data store.)

Description of Deployment Gaps

In an evaluation of ten real-world PHP object injection vulnerabilities, the former approach
found 30 new vulnerabilities, but also suffered from false positives and false negatives (A.2, A.3).
More importantly, however, is the performance overhead: on average, the prototype required eight
minutes and 2GB of memory to perform the necessary analyses for a given application (B.1).

With regard to detecting second-order vulnerabilities, the later approach does not consider all
potential persistent data stores; as such, it may not be effective if databases or the PHP $ SESSION

array is not used. Additionally, the reported false positive rate is impractically high, 21% (A.2),
and it is not compatible with existing PHP binaries (C.2).

3.2.3 Defense: Taint Tracking-Based Detection

Description Of Defense

To detect code injection within the context of server-side web applications that generate SQL
and NoSQL queries, Diglossia distinguishes code from data in generated queries and determines
which parts of the query are user-generated through efficient taint tracking [37]. The approach

14

maps all application-generated characters to “shadow” characters that do not occur in the user
input. Any non-shadow characters in the shadow query are thus tainted by user input. Diglossia
parses the original query along with the shadow query and ensures that both are syntactically
isomorphic and that all code within the shadow query is in the shadow characters, which means it
was generated by the application, not the user input. A prototype is implemented as an extension
to the PHP interpreter.

Description of Deployment Gaps

Diglossia is evaluated on a test suite of 11 PHP web applications. Reported performance
overhead is negligible, code injection detection accuracy is perfect with no false positives or negatives
reported, and no manual modification to PHP source code is required. However, the Diglossia PHP
interpreter extension is necessary, which presents binary compatibility obstacles (C.2). Additionally,
if the application developer intentionally includes user input as part of an SQL or NoSQL query,
Diglossia will report a code injection attack when the application runs (A.2). This is an important
limitation, as many code injection vulnerabilities do, in fact, insert user input directly into a query
string (this is a bad programming practice, but nonetheless may occur in legacy web applications).
As such, this approach may not be directly applicable to all PHP source code (C.1).

3.2.4 Research Direction

While the domain of code injection and code reuse attacks is well-studied for host-based at-
tacks, it is much less mature for web-based attacks. Ad-hoc research has shown different possibilities
for such attacks in modern systems (as discussed above), but the scope, classes, and scale of code
injection/reuse vulnerabilities are yet unknown. Research should first focus on studying different
classes, types, and possibilities of code injection/reuse attacks in web-based systems. Questions
such as the following should be answered first: which components of a modern web-based system
are usually vulnerable to such attacks? Is it only the scripting languages (e.g., PHP) or can they be
applied to markup languages and protocols? What can an attacker do by exploiting each class?, etc.
Then, more effective defenses should be researched to combat such attacks. Since only small areas
of web-based code injection/reuse attacks are studied, it is unknown to what extent the current
defenses fall short of solving the entire problem. Having said that, both defenses reviewed in this
report have issues with respect to high false positive rates (A.2) and binary compatibility (C.2).
Future defenses to prevent against code injection and reuse should be applicable without changes
to binary and should achieve much lower false positive rates to be widely applicable.

3.3 LACK OF EFFECTIVE DEFENSES TO COMBAT SESSION FIXATION

3.3.1 Attack Description

Session fixation attacks happen when an attacker can fake another user’s session identifier
(ID). Since session ID is often used by the web servers to allow users to have a persistent session
and avoid having to enter their credential for every page separately, session fixation attacks allow
an attacker to navigate to sensitive pages and access a user’s sensitive data without knowing a

15

user’s credentials (e.g., username/password). Web servers that accept session IDs in the URL or
POST data are especially vulnerable to session fixation attacks.

To understand how session fixation attacks work, consider the following example. Alice, an
analyst, usually logs into an information portal https://portal.com/ to query information she
wants to analyze. She uses secure passwords to log into the portal. The portal tracks its user using
a session ID that is sent back and forth in the URL. Malice wants to access Alice’s private folder on
the portal, so she crafts a link https://portal.com/?SID=KNOWN TO MALICE and sends it to Alice
in a phishing email saying “See these reports on the portal”. Alice clicks on the link and logs in
using her credentials. From this point on, Malice can access Alice’s private areas of the portal by
navigating to https://portal.com/?SID=KNOWN TO MALICE. Because the portal keeps track of its
user by the session ID, it is fooled to think Malice is Alice (i.e., confused deputy problem). There
are also other variants of this attack with server generated session IDs.

Session fixation attacks can be detected by emulating a session hijacking attacker [42], in a
process similar to fuzzing.

Session fixation attacks are simpler to mitigate than many other web-based attacks because
only the session handling part of the server should be modified. In contrast, XSS attacks can happen
potentially from any user provided input to the web service. Simple defenses such as changing the
session ID every time the user logs in, tying session ID to stronger identifiers such as SSL session
ID, and frequently changing the session ID can mitigate this attack to a large extent. As a result,
less research has been done for defenses against session fixation compared to some other web-based
attacks.

3.3.2 Defense: Code-Level Countermeasures

Description Of Defense

Session fixation attacks can be mitigated by analyzing the server source code [19]. Specifically,
if in the server source code, the session ID is generated before the authentication, the session ID
is not reissued after the authentication, and the code accepts the session ID from the user, it is
vulnerable to session fixation attacks. A vulnerable server code can be fixed by breaking any of
those conditions. For example, if the session ID is reissued after the authentication, it can mitigate
the attack. A similar defense can be applied at the framework-level by analyzing the incoming
HTTP requests and session ID values.

Description of Deployment Gaps

Code-level countermeasures unfortunately have various deployment gaps. First, they require
access to the source code of the server which makes them binary incompatible (C.2). Fully auto-
mated source code analyses can also be challenging, so in many cases such an analysis may require
manual annotations (C.1). Moreover, code-level defenses also lack federation support because they
require access to the web server (C.4).

16

3.3.3 Defense: Reverse-Proxy Countermeasures

Description Of Defense

A reverse-proxy defense works by assigning an extra proxy-generated session ID (PSID) to the
server-generated session ID (SID) [19]. The PSID is refreshed after authentication which creates the
illusion of SID re-issuance by the server. HTTP requests that do not carry the correct SID+PSID
combination will be treated as a new request and will be assigned fresh PSIDs. As a result, session
fixation attacks that spoof the SID are mitigated by the fresh PSID.

Description of Deployment Gaps

In contrast to code-level countermeasures, reverse-proxy defenses do not require access to
the source code, or even the server itself. A reverse-proxy technique can be applied to the bor-
der gateway of an enterprise to protect against session fixation attacks targeting various external
web servers. However, the reverse-proxy defense requires modification to the infrastructure (C.3).
Moreover, the reverse-proxy requires a centralized solution. In other words, all external web com-
munications should go through the same proxy, and they cannot be load-balanced across multiple
outgoing proxies, because one proxy can break another proxy’s already established session. This
indicates a scalability issue that may induce significant overhead when implemented (B.1).

3.3.4 Research Direction

Session fixation attacks are one of the easier research targets to solve in the short term because
they only require modification of the session management part of a web server. Research in this area
should develop new session handling methods that are not accessible to user inputs. For example,
many existing servers use user-provided session ID which creates attack opportunities. A challenge
in session fixation attacks is the requirement to modify the server which creates compatibility
problems. In fact, both defenses that address session fixation suffer from source (C.1) and binary
compatibility (C.2) issues. Future defenses should address session fixation ideally without creating
source/binary incompatibility.

3.4 LACK OF EFFECTIVE DEFENSES TO COMBAT PRIVILEGE ESCALATION

3.4.1 Attack Description

Privilege escalation attacks happen when users gains access to a web service beyond the
content they are allowed to access. This happens, for example, by exploiting an implementation
flaw in the web service code or logic. Privilege escalation can also happen because of missing or
incorrect authorizations in the web servers [27]. Privilege escalation problems are exacerbated by
three challenges: 1) web-services do not have native access control similar to operating systems,
2) the connection to the back-end database is often through a superuser (admin) which allows a

17

potentially compromised front-end unlimited access to sensitive data, and 3) lack of a consistent
framework makes authorization enforcement error-prone and incorrect in many cases.

Other classes of web-based attacks can also be considered a form of privilege escalation. For
instance, XSS can also be considered a privilege escalation attack in the sense that the attackers
gain access to parts of a page (iFrames) that they are not normally allowed to access. However,
in this section, we limit the analysis to low-level code vulnerabilities that are not included in the
other attack classes.

Defense against privilege escalation attacks often limits the impact of such attacks by creating
isolation among the various web service components, and limiting their interaction to the bare
minimum. Many such defenses, in their core, are applying the principle of least privileges to the
web service.

Privilege escalation defenses also provide the additional benefit of limiting the potential dam-
ages of other web-based attacks. For example, iFrame isolation techniques can also mitigate the
impact of potential XSS attacks.

3.4.2 Defense: Authorization Context Consistency

Description Of Defense

One approach to mitigate privilege escalation attacks is to ensure that the web application
consistently enforces its authorization policy. In this approach, the analysis does not focus on
what the authorization policy is. Rather, it ensures that a policy is enforced consistently. This is
particularly useful for situations where a policy exists, but it may be incorrectly enforced in parts
of the web application because of developer error. A recent technique called MACE [27] checks
for such consistencies by annotating authorization accesses of security sensitive actions within the
source code. It then performs a control flow analysis to identify variables pertinent to determining
authorization and constructs a data dependency graph to capture data flows between authorization
variables. By creating a source-sink graph form entry points (sources) to sensitive queries (sinks),
it identifies authorization inconsistencies along each path from source to sink.

Description of Deployment Gaps

Such consistency analyses require access to the source code of the server (C.2, C.4). Consis-
tency can only be checked for certain known operations (e.g., database DELETE, INSERT, etc.),
so such analyses are limited in their generalizability for different types of privilege escalation (A.1).
Moreover, a single authorization check may result in numerous inconsistency validations propagated
throughout the code, thereby artificially increasing the true positive rate (A.1). The annotations
require manual hints from the developer, so it is not fully source compatible (C.1). Because the annotations
have to be applied to all modules for the framework to work at all, it is not modular (C.5).

18

3.4.3 Defense: Web Server Isolation

Description Of Defense

Another approach to mitigate privilege escalation attacks and also possibly the impact of
other types of web-based attacks is enforcing isolation in the web server. This trend has become
popular in the past few years in the community. Similar to virtualization-based defenses that
create isolation of machine in case of host-based attacks, web-based isolation techniques apply
sandboxing among various web service components and limits the interactions to the bare minimum
necessary. In other words, they apply the principle of least privileges in the context of web services.
One of the pioneering works in this domain was the CLAMP system [29] which manually applies
communication isolation, access control, and sandboxing to the commonly used Linux, Apache,
MySQL, and PHP (LAMP) system. A more recent work in this domain, Passe [4] automates most
of this process by extracting data and control flow relationships in the web service and strongly
enforcing such relationships. Passe enforces such isolations using process sandboxing, constraining
database queries, and strong authentication and session management. Passe works with the Django
web development framework. Isolations such as the one enforced by Passe can mitigate privilege
escalation attacks. They can also mitigate the negative impacts of other web-based attacks such
as XSS, code injection, logic vulnerabilities, session fixation, and file inclusion. Although in those
contexts, isolation cannot stop the exploitation of the vulnerability, it can mitigate the damage
done by the attack (e.g., the amount of data leaked, the parts of the database maliciously modified,
the number of users compromised, etc.).

Description of Deployment Gaps

Techniques such as CLAMP and Passe have unknown effectiveness against web-based attacks
other than privilege escalation (A.1). Even for privilege escalation, the scope of possible damage
is unknown unless one can formally analyze the web server (A.1). More automated techniques like
Passe can have unacceptably high false positives (A.2). For example, if certain correct behavior is
observed infrequently, Passe can block it as a potential attack. Both CLAMP and Passe require
access to the server source code (C.2, C.4). Passe also requires developer-provided end-to-end test
cases which are unscalable and hard to obtain (C.1).

3.4.4 Research Direction

Privilege escalation is one of the harder problems to solve as it relates to many other existing
challenges such as proper input checks, logic vulnerabilities, missing authorization checks, etc. Both
mitigation techniques that address privilege escalation suffer from issues of effectiveness (A.1) as
well as source (C.1), binary (C.2), and federation (C.4) compatability. Near-term research should
focus on isolation techniques that are binary compatible and support federation. Even though such
defenses will have unknown effectiveness against specific vectors of attack, and they instead try
to limit the damage afterward, they can be the basis for more quantifiable defenses in the longer
term.

19

3.5 LACK OF EFFECTIVE DEFENSES TO COMBAT LOGIC VULNERABILI-
TIES

3.5.1 Attack Description

While logic flaws are somewhat loosely defined, they generally capture the set of vulnerabilities
that violate business logic. They are often distinguished from other vulnerability types by the fact
that other vulnerabilities are more broadly applicable to all users of a technology and are not
closely tied to any particular logic. In the context of web security, logic vulnerabilities often result
in unintended use of web applications without leveraging other attack types such as XSS or SQLi.
For example, attackers have exploited vulnerabilities in web application logic to convince sites that
payment should be directed to a malicious party rather than the site itself by exploiting flawed
logic in the site’s use of third-party payment APIs [45]. In this example, a vulnerable benign party
fails to properly authenticate that they were paid by a web user, relying upon a third-party’s claim
(e.g., Amazon) that some payment was made, but failing to check to whom the payment was made
(i.e., a malicious party rather than the benign site itself).

3.5.2 Defense: Logic Vulnerability Detectors

Description Of Defense

Much of the existing work for logic vulnerabilities involves trying to detect the vulnerabilities
rather than implementing active protections. Most approaches rely upon developing a model of
how the application should behave and testing for deviations in behavior. Approaches have been
developed that create these models by analyzing source code [2,14] and, in cases where source code
is not available, by simply observing traffic [30]. For example, one approach [30] uses sample HTTP
traffic to generate a website navigation graph, infers behavioral patterns, uses these patterns to
generate test cases, and checks how a site performs against these tests using manually specified
Linear Temporal Logic.

Description of Deployment Gaps

Model checkers can be useful for automatically finding logic vulnerabilities in web applica-
tions that contain formal specifications of expected behavior and state changes. Lacking such
specifications, current logic vulnerability discovery approaches are forced to infer models of web
applications [2, 14] and to guess at expected behavior for narrow use cases [30]. This inference is
prone to false negatives (A.3) and often requires substantial manual effort (C.1), both of which
have hindered deployment. Model checkers would greatly benefit from approaches that enable
the creation of formal specifications with a level of manual effort that is cost effective for small
organizations, given the range of organizations that provide web applications on the Internet.

20

3.5.3 Defense: Third-Party Communication Defenses

Description Of Defense

One of the fundamental challenges of web security is that code is combined from multiple
sources to create a complete web application. In order to minimize the amount of code that must
be run within the same context, standards bodies, browsers, and web service providers have offered
more limited means for cross-origin communication (e.g., via the postMessage interface or web
service APIs such as Google Checkout). However, even with these more limited means of commu-
nication, logic vulnerabilities remain in the way that parties from different origins communicate.
Defenses have arisen that try to protect or verify the secure use of these interfaces. One recent
example [47] looks at the use of single sign-on (e.g., Facebook) and payment services (e.g., Google
Checkout) by third party websites and tries to identify invariants based upon sample network traces
of sites interacting with these services; using these invariants it would build a model and monitor
traffic patterns for deviations.

Description of Deployment Gaps

Existing defenses have not been able to provide much information about the false negatives
and false positives rates. Given that existing approaches have been implemented for rather narrow
use cases, one would expect that there would be significant false negatives. The approach described
above [47] additionally requires a proxy server to be installed by websites (C.3, C.4).

More generally, the complex nature of developing interconnected web applications demands
extensive security expertise from web developers, many of whom lack any background in security.
Interfaces that are documented by standards bodies and implemented in browsers, web program-
ming languages, and libraries often lack a means for using the interface securely by default. For
example, the postMessage interface in HTML5 provides a controlled way for content from different
origins to exchange messages with one another. To use postMessage securely developers should
properly check that a message comes from the expected origin. While this practice is recommended
by the WHATWG that is responsible for maintaining the HTML5 standard, it has not been well
adopted by even the largest websites. Of the Alexa top 10,000 sites in 2013, more than half the re-
ceivers of postMessage communications were not checking or were improperly checking origins [38].
Given the large number of interfaces that can be misused in web applications and the limited se-
curity expertise of many developers, default means for securely using these interfaces are necessary
for improving the security of deployed web applications.

3.5.4 Research Direction

Logic vulnerabilities are also one of the harder classes of attacks to address in the short term.
Since the vulnerability arises from the design of the system, and not the implementation, many
automated techniques for detecting such vulnerabilities suffer from high false positive rates. Indeed,
both defenses studied in this report suffer from high false negative rates (A.3). Future research
should focus on observables that do not necessarily prove the existence of logic vulnerabilities, but

21

can correlate well with their existence. For example, studying large web-based code bases may
indicate that historically usage of certain functions or coding practices correlated with the number
of logic vulnerabilities. Such analyses can then be used to assess the amount of logic vulnerabilities
in the code. As a result, we recommend that in the near-term, research is focused on statistical
analyses of logic vulnerability occurrences.

3.6 LACK OF EFFECTIVE DEFENSES TO COMBAT FILE INCLUSION

3.6.1 Attack Description

File inclusion vulnerabilities [21] exist in web applications which open a file based on a user
input without properly sanitizing it. For example, if a PHP scripts receives an input from the
user (e.g., using $ GET) and then opens that file (e.g., using an include) without sanitizing it, an
attacker can control what file is actually opened by including reference to another file. Consider
the following example which allows a user to select his/her ROLE as either “analyst” or “auditor”.
Then it opens the appropriate .php file to show the appropriate content accordingly.

<form method="get">

<select name="ROLE">

<option value="faculty">analyst</option>

<option value="student">auditor</option>

</select>

<input type="submit">

</form>

<?php

if (isset($_GET[’ROLE’])) {

include($_GET[’ROLE’] . ’.php’);

}

?>

The server can be forced to include the malicious external file by requesting the page:
/vulnerable .php?ROLE=http://malicious.com/exploit. This is because the above PHP scripts
opens the file included in ROLE without properly checking whether it is one of the correct values of
“analyst” or “auditor”.

Since the possible values for the file is often limited, developers can properly check the requests
against those values if they are aware of the file inclusion vulnerabilities. The challenge, as in many
other attacks, arises from securing many existing code bases and web servers.

We are not aware of any prominent defensive technique against file inclusion other than simple
best practices. Best practices based on proper input checking before file opening would, of course,
require access to the source code of the web server and are, therefore, not binary compatible (C.2).

22

Moreover such countermeasures also do not support federation because they require control of the
server (C.4). File inclusion attacks can also be stopped by regular expressions or input checks
agnostic of the web server; however, such countermeasures have very high false positive rates (A.2).

3.6.2 Research Direction

File inclusion is a smaller problem compared to other web-based attacks because it only
applies to situations where user input is directly used to open a file on the system. This can
explain why no techniques in the past few years have been proposed specifically against file inclu-
sion attacks. We recommend that near term research focuses on studying the prevalence of such
attacks/vulnerabilities before investing in new defenses.

3.7 LACK OF EFFECTIVE DEFENSES TO COMBAT DRIVE-BY DOWNLOADS

3.7.1 Attack Description

A drive-by download attack occurs when a user is lured into visiting a malicious website
that serves code, typically JavaScript, that exploits an underlying vulnerability in the user’s web
browser or browser plugins. The vulnerability may be a traditional type of memory corruption,
for example, such as a stack- or heap-based buffer overflow. If the exploit is successful, it often
downloads additional malware onto the user’s machine. Drive-by downloads may also be delivered
through email, but the key characteristic is that the user is tricked into visiting a malicious website
that exploits vulnerable client-side software. Note, however, that drive-by downloads are not limited
to specifically suspicious types of websites. They are, indeed, observed on various types of websites
with different contents [26]. A variety of research efforts have been proposed to mitigate the harmful
effects of visiting malicious webpages, the most significant of which are discussed below.

3.7.2 Defense: Static Analysis Based Detection

Description Of Defense

Zozzle [9] is a browser-based JavaScript attack detection tool that trains a machine learn-
ing classifier on features of the JavaScript abstract syntax tree (AST) using a corpus of labeled
malware samples collected by the Nozzle heap-spraying detector [31]. Since sophisticated mal-
ware attempts to evade detection with obfuscation techniques, Zozzle is implemented within the
browser’s JavaScript runtime engine, which can dynamically analyze the JavaScript right before
execution.

Rozzle [22] augments static analysis based detection techniques with multi-execution analysis.
The main idea behind Rozzle is to explore all branches of every conditional that depends on the
execution environment. For example, a JavaScript statement may be conditioned on the browser’s
user agent string. This multi-execution analysis allows for analysis of all potential code branches
that may lead to malicious behavior.

23

Description of Deployment Gaps

Zozzle is evaluated on a corpus of malicious JavaScript samples and 1.2 million benign samples,
and the false positive rates for detection are very low (effectively zero). However, the false negative
rate is 9%, which may be too high for practical deployment as many malicious samples are not
detected (A.1, A.3). The prototype implementation is built within the Internet Explorer browser,
which introduces compatibility challenges for users of other browsers (C.2) and cannot be applied
without controlling the user’s browser (C.4).

Rozzle offers acceptable performance overhead in terms of CPU and memory usage. However,
Rozzle is built on top of the Chakra JavaScript engine in Internet Explorer 9, which makes the
prototype incompatible with other browsers (C.2) and cannot be applied without controlling the
user’s browser (C.4).

3.7.3 Defense: Malicious Webpage Search

Description Of Defense

Another approach to mitigating drive-by downloads is to identify the malicious webpages
through search engine queries. EvilSeed [18] starts with a set of known malicious web pages and
then extracts the characteristic similarities of these pages and uses web crawling and existing search
engines to locate additional, unknown malicious webpages that have similar features.

Description of Deployment Gaps

One of the main limitations of techniques that use web crawlers or search engines to automate
the process of locating malicious webpages is that the webpage may have the ability to identify
the crawler and present a different, non-malicious page. This limitation relates to the overall
effectiveness of the technique and the potential for evasion (A.1).

3.7.4 Research Direction

Drive-by download attacks reside in the gray area between web-based and host-based attacks.
Many such attacks use host-based exploitation techniques (e.g., memory corruption) to cause the
execution of malicious code on the target system. Since the scope of such attacks can be very large,
we recommend that in near term, research focuses on techniques to isolate the damage from such
attacks to the browser environment and prevent its propagation to the rest of the system. Moreover,
studies analyzing the prevalence of these attacks are more than seven years old. New measurement
studies establishing their occurrences in the current environment can also be an informative near
term research effort.

24

3.8 LACK OF EFFECTIVE DEFENSES TO COMBAT CLICKJACKING

3.8.1 Attack Description

Clickjacking attacks trick a user into clicking a link they did not intend to click or into using
unintentional parameters in a request. The typical attack model involves a user visiting a malicious
site that includes content from other, often trusted sites. For example, a malicious site might trick
a user into unknowingly clicking a link that permits access to a webcam via an embedded Adobe
Flash Player plugin settings page.

These attacks are accomplished by either changing the appearance of a page (e.g.,, displaying a
fake cursor) or via careful timing manipulation (e.g.,, a malicious link appears right at the moment
that a user is about to click). Similar variants exist for touchscreen devices and are commonly
referred to as tapjacking attacks [34]. A 2012 study reported that 70% of the top 20 banking
websites lacked protection against clickjacking attacks [48].

3.8.2 Defense: Anti-Framing Defenses

Description Of Defense

One of the most effective defenses to date allows websites to specify if its pages can be framed
by other sites (cross-origin). A primary means for accomplishing clickjacking is for the malicious
site to frame a page from a trusted site and then obfuscate that frame by tricks such as making it
transparent or partially covering its values. A relatively successful anti-framing defense, X-Frame-
Options, is a recently added HTTP header that enables benign websites to specify if their pages
can be framed, thus preventing unintended framing by malicious sites.

Description of Deployment Gaps

The major gap in such defenses is that they are incompatible with sites that need to be
framed (C). For example, social media sites wish to allow other sites to embed their Like or Follow
pages as frames. Other gaps are that the X-Frame-Options must be specified per-page (C.1),
requiring greater developer effort, which has hindered adoptability. Furthermore, proxy servers can
undermine sites that properly implement X-Frame-Options by stripping out header fields (A.1).
Alternative approaches for preventing framing, called framebusting techniques, typically rely upon
JavaScript checks. The X-Frame-Options header typically provides better protection than these
framebusting techniques as several ways to bypass these techniques have been demonstrated [33]
(A.1).

25

3.8.3 Defense: User Confirmation Defenses

Description Of Defense

An existing defense that can be used by sites requiring embedded frames (and thus unable to
deploy X-Frame-Options) is to prompt for user confirmation when links are clicked. For example,
Facebook confirms if a user indeed wants to click the “Like” button for sites that it deems suspicious.

Description of Deployment Gaps

However, even with confirmations users can be tricked (A.1); one study reported that 47% of
users fell for a “double-clicking” attack [17]. Additionally, the need to prompt for confirmations has
major usability implications and can only be deployed sparingly, preventing it from being adopted
more widely (B.3).

3.8.4 Defense: Timing Delay Defenses

Description Of Defense

Recent defenses have suggested adding a delay until links become active following a visual
change to the UI. The goal is to give the user enough time to register any timing-based obfuscations
(e.g.,, a button that appeared under their cursor right as they were about to click). Firefox has
implemented such a delay for installing add-ons and activating new features.

Description of Deployment Gaps

Other browsers have not followed suit, most likely due to the fact that these defenses can
only be effective against timing-based attacks (A.1) and also have usability implications due to the
forced delay.

3.8.5 Defense: Sensitive UI Area Defenses

Description Of Defense

Huang et al. [17] have proposed extending the timing concept by enforcing delays on links
whenever the cursor enters a sensitive UI area. The sensitive area must be specified by the website
developers. They have also suggested other defenses based upon this sensitive UI area concept
that could defend against attacks that are not purely timing based. One is to have the browser
compare screenshots of the actual displayed UI with an isolated rendering of that same embedded
frame. The goal is to detect any visual obfuscations performed by another frame. Additionally,
they recommend that any time the cursor enters the sensitive area that browsers force the cursor
to be displayed and that the area be highlighted in an effort to better direct user attention to a
potential sensitive object click.

26

Description of Deployment Gaps

Some of these recommendations are currently being adopted in the W3C UI Safety specifica-
tion. However, gaps remain in the effectiveness of these proposals. Akhawe et al. [1] have argued
that even with an accurately displayed frame and these timing protections, the user’s perception
can be manipulated by techniques such as showing additional pointers or distracting attention
(A.1). Furthermore, the web application itself must be modified to properly delineate the sensitive
UI area (C.1, C.4).

3.8.6 Research Direction

Since most reports assign low priority to clickjacking attacks, research should focus first on
studying their prevalence in modern systems before building more effective defenses.

3.9 LACK OF EFFECTIVE DEFENSES TO COMBAT PLUG-IN ATTACKS

3.9.1 Attack Description

Plug-in attacks are a comparatively smaller class of web-based attacks targeting the clients in
which a malicious plug-in is installed in the web browser [25]. Malicious plug-ins may be installed
quietly, or with user consent. With more browsers blocking quiet plug-in installs, malicious plug-
ins take the form of a useful plug-in with some Trojan-like behavior. Malicious plug-ins can
have a wide range of unwanted behavior ranging from malicious actions such as stealing passwords,
stealing email addresses, or uninstalling other extensions, to a potentially suspicious behavior of
injecting dynamic JavaScripts or requesting non-existent domains.

Avoiding plug-ins and extensions altogether is a simple countermeasure against malicious
plug-ins. However, with a wide range of useful functions provided by such plug-ins, avoiding them
can negatively impact the usability of systems.

3.9.2 Defense: Eliciting Malicious Behavior

Description Of Defense

A defense against malicious plug-ins, is to elicit their malicious behavior by a technique
similar to fuzzing [20]. This defense (called Hulk), leverages a concept called honey pages which
dynamically adapts to a plug-in’s expectation in order to trigger a potentially malicious behavior.
Then by incorporating event handler fuzzing, Hulk provides the proper stimuli for the plug-in. Hulk
detects potentially malicious behavior by monitoring the browser extension hooks, content scripts,
and network activities. In many cases, it is unknown whether the behavior is actively malicious or
buggy. For example, plug-ins that produce HTTP 4xx errors may just simply be buggy or they may
be accessing a command and control server that does not exist yet, but will become available at a

27

future date to implement a botnet-like behavior. Therefore, Hulk can mark a plug-in as malicious,
benign, or suspicious, the last category referring to these uncertain situations.

Description of Deployment Gaps

Hulk requires access to the browser source code (C.1). It must also be applied to the entirety
of the browser, so it is not modular (C.5). A larger problem is the potentially high false positive
rate in a technique like Hulk (A.2). Since in many cases the real behavior of the analyzed plug-ins
is unknown, it is hard to measure the real false positive rate. Also, it is uncertain what a user can
do in cases where the plug-in looks suspicious, but not actively malicious. Finally, it is unknown
how easy it is to evade Hulk-like detection mechanisms (A.1).

3.9.3 Defense: Micro-Privileges

Description Of Defense

Another defense against malicious browser extensions, implements fine-grained privileges to
limit their accesses and potential damages [25]. The motivation behind this countermeasure is
that Chrome’s access control system fails to properly implement the principle of least privileges
and privilege isolation. By allowing finer-grained privileges, this defense can mitigate different
classes of web-based attacks that use malicious extensions. For example, a user can limit the
communications of an extension to certain domains, mitigating attacks such as XSS and CSRF in
that extension.

Description of Deployment Gaps

The micro-privilege countermeasure has numerous usability and scalability problems. First,
properly deciding what privileges an extension can have is left at the discretion of the users which
has human overhead (B.3), and can severely impact security (A.1) and false negative rates (A.3) as
the user does not have a proper basis for making such decisions. Moreover, such micro-privileges
do not protect the system against malicious origins (i.e., if the allowed domain is itself malicious)
(A.1). The countermeasure also requires access to the source code of the browser (C.2).

3.9.4 Research Direction

Since malicious plugins can perform a wide variety of malicious actions, research to address
this gap should focus on both technological and policy aspects. For example, in managed environ-
ments such as DoD systems, plugins can be automatically vetted before being allowed installation
on end clients. Some of the practicality challenges of existing defenses (e.g., source compatibility)
may also be more tractable if it is only performed on a central vetting system.

28

4. SUMMARY AND CONCLUSION

Web-based attacks have been used widely in today’s systems and network to compromise the
security of web services. They can be used to exfiltrate sensitive information, maliciously modify
information, or damage the availability of important servers and services.

In this report, we studied some of the most prominent defenses proposed or deployed against
web-based attacks. We particularly focused on deployment gaps and impracticalities in existing
defenses that impede their widespread adoption.

Unfortunately, simple defenses against web-based attacks such as input sanitization, character
escaping, and learning-based techniques provide little protection against evasion techniques and
often have impractically high false positive and false negative rates.

More effective defenses in this domain such as taint-tracking, automated consistency checks,
and static analysis techniques often either require significant modifications to servers and infrastruc-
tures, thus violating federation support, or they impose high computational or operator overheads.

Another class of defense against web-based attacks does not mitigate the vulnerability per se;
rather, it tries to limit the potential damages of an exploited vulnerability by creating fine-grained
isolation, authorization, and access control among various components of a web service. Although
beneficial from a security standpoint, these defenses fail to mitigate specific attacks. As a result,
their precise impact and operational parameters are often unknown.

Despite many existing defenses and techniques, the domain of web-based attacks requires
significant research and development effort to provide practical and effective defenses. Lack of
effectiveness and ease of evasion of many existing defenses indicates a lack of deep understanding
of this domain and of the challenges faced by organizations trying to mitigate real-world attacks.
It is clear that stronger and more practical defenses are needed in all areas discussed in this report
as none of the defenses reviewed can be expected to provide more than incremental protection
in the near term. The complexity and distributed nature of the design and implementation of
web-based systems exacerbate these challenges. Perfect security is an unattainable goal in general
but is particularly elusive in the context of web security. Control over both the web server hosting
the content as well as the web browsers accessing the content is typically not held by individual
organizations and many attacks continue to be possible using vulnerabilities on either the server
or browser end.

Given the poor state of security in the web-based systems and the rampant problems on every
component of such systems, major improvements are hard to achieve without significant investment
in this area. We recommend that in the immediate term, efforts should focus on limiting a potential
attacker’s access to such systems using traditional air-gapping techniques and physical separation.
In the short- and medium-term, research should focus on designing more effective defenses by
considering the weaknesses in existing ones. Enumerating the previous “dead-ends” can facilitate
such research as it can prevent duplication of effort based on weak defensive paradigms. Weaknesses
identified in this report can guide such future efforts. Although strictly speaking such techniques
can improve the state of security in web-based systems, we expect that given the extent of security

29

problems, many such defenses may still be limited in their scope and a combination of them will
be necessary for an effective coverage. In the long term, improved protocols, clean-slate design
of standards, and systematic methodologies (e.g., formal methods) for web-based system design
should be deployed to mitigate large classes of web-based attacks; similar to complete memory
safety techniques against memory corruption attacks.

For high priority attacks, in the near term, we recommend that research efforts focus on
building more effective defenses against XSS and Session Fixation attacks. This can be achieved
by focusing on fundamental properties of these attacks (spoofed identities) as opposed to some
artifact of existing attacking techniques (e.g., special characters) that can be evaded by a motivated
attacker. For code injection/reuse attacks, we recommend that research first focuses on studying
and analyzing the scope and possibilities of such attacks. Although ad-hoc efforts have shown
different possibilities for code injection/reuse attacks in various components of web-based systems,
the extent and potential impact of such attacks are much less understood in the web-based domain,
compared to the host-based domain.

For medium priority attacks (privilege escalation, logic vulnerabilities, and file inclusion), we
have a diverse set of recommendations in the near term. Since privilege escalation can encompass
many challenges, we recommend that compatible isolation techniques are developed that can be
applied federally to different systems. Although the exact impact of such techniques will be un-
known as they are not attempting to stop specific exploitation methods, we believe that they can
form an important basis for tackling the problem in the near term. For file inclusion attacks, since
they are limited to specific types of web services, we recommend that their prevalence is evaluated
before new techniques are designed. For logic vulnerabilities, since the problem is in the design
of a system, not its implementation, we recommend that research focuses on finding observable
properties that correlate with the existence of such vulnerabilities.

For low priority attacks, we recommend that research focuses on evaluating their prevalence
in the wild before developing new defensive techniques. For malicious plugins, we recommend
that proper policies (e.g., vetting before install, or white list) are deployed in conjunction with
technological solutions to make the problem more tractable.

30

APPENDIX A: SUMMARY OF DEPLOYMENT GAPS

The table A.1 indicates a summary of the web-based countermeasures and their deployment
gaps. The abbreviations in the first column stand for: Cross-Site Scripting (XSS), Code Injection
(CI), Drive-by Downloads (DD), Click-jacking (CJ), Session Fixation (SF), File Inclusion (FI),
Privilege Escalation (PE), and Plug-Ins (PI).

TABLE A.1

A Summary of Web-Based Countermeasures and Their Deployment Gaps

Deployment Gaps

Protection Overhead Compatibility

A.1 A.2 A.3 B.1 B.2 B.3 C.1 C.2 C.3 C.4 C.5

X
S
S

XSS Auditor × × × ×
Script Separation × × × ×
Training-Based × × × ×
Taint Tracking × × × ×
iFrame Isolation × × × × ×

Mutation-Based XSS × × × ×

C
I Static Analysis × × × ×

Taint Tracking × × ×

D
D Static Analysis × × × ×

Webpage Search ×

C
J

Anti-Framing × ×
User Confirmation × ×

Timing Delay ×
Sensitive UI Area × × ×

L
o
g
ic Detectors × ×

Third-Party Comm. × ×

S
F

Code-Level × × ×
Reverse-Proxy × ×

F
I Generic × × ×

P
E

Context Consistency × × × × ×
Isolation × × × × ×

P
I Eliciting Behavior × × × ×

Micro-Privileges × × × ×

31

This page intentionally left blank.

REFERENCES

[1] Devdatta Akhawe, Warren He, Zhiwei Li, Reza Moazzezi, and Dawn Song. Clickjacking revis-
ited a perceptual view of ui security. BlackHat USA, August, 2013.

[2] Davide Balzarotti, Marco Cova, Viktoria V Felmetsger, and Giovanni Vigna. Multi-module
vulnerability analysis of web-based applications. In Proceedings of the 14th ACM Conference
on Computer & Communications Security, pages 25–35. ACM, 2007.

[3] Adam Barth, Collin Jackson, and John C. Mitchell. Robust defenses for cross-site request
forgery. In Proceedings of the 15th ACM Conference on Computer and Communications Se-
curity, CCS ’08, pages 75–88, New York, NY, USA, 2008. ACM.

[4] Aaron Blankstein and Michael J Freedman. Automating isolation and least privilege in web
services. In Security and Privacy (SP), 2014 IEEE Symposium on, pages 133–148. IEEE, 2014.

[5] Tyler Bletsch, Xuxian Jiang, Vince W. Freeh, and Zhenkai Liang. Jump-oriented programming:
A new class of code-reuse attack. In Proceedings of the 6th ACM Symposium on Information,
Computer and Communications Security, ASIACCS ’11, pages 30–40, New York, NY, USA,
2011. ACM.

[6] Hristo Bojinov, Elie Bursztein, and Dan Boneh. Xcs: Cross channel scripting and its impact
on web applications. In Proceedings of the 16th ACM Conference on Computer and Commu-
nications Security, CCS ’09, pages 420–431, New York, NY, USA, 2009. ACM.

[7] Yinzhi Cao, Vinod Yegneswaran, Phillip A Porras, and Yan Chen. Pathcutter: Severing the
self-propagation path of xss javascript worms in social web networks. In NDSS, 2012.

[8] Cenzic. Application vulnerability trends report: 2014. Technical report, Cenzic, 2014.

[9] Charles Curtsinger, Benjamin Livshits, Benjamin Zorn, and Christian Seifert. Zozzle: Low-
overhead mostly static JavaScript malware detection. In Proceedings of the Usenix Security
Symposium, August 2011.

[10] Johannes Dahse and Thorsten Holz. Static Detection of Second-Order Vulnerabilities in Web
Applications. In 23rd USENIX Security Symposium (USENIX Security 14), pages 989–1003,
San Diego, CA, August 2014. USENIX Association.

[11] Johannes Dahse, Nikolai Krein, and Thorsten Holz. Code reuse attacks in php: Automated
pop chain generation. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’14, pages 42–53, New York, NY, USA, 2014. ACM.

[12] Adam Doupé, Weidong Cui, Mariusz H. Jakubowski, Marcus Peinado, Christopher Kruegel,
and Giovanni Vigna. dedacota: Toward preventing server-side xss via automatic code and
data separation. In Proceedings of the 2013 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’13, pages 1205–1216, New York, NY, USA, 2013. ACM.

[13] S Esser. Utilizing Code Reuse or Return Oriented Programming in PHP Applications. Black-
Hat USA, 2010.

33

[14] Viktoria Felmetsger, Ludovico Cavedon, Christopher Kruegel, and Giovanni Vigna. Toward
automated detection of logic vulnerabilities in web applications. In USENIX Security Sympo-
sium, pages 143–160, 2010.

[15] WG Halfond, Jeremy Viegas, and Alessandro Orso. A classification of sql-injection attacks
and countermeasures. In Proceedings of the IEEE International Symposium on Secure Software
Engineering, pages 65–81. IEEE, 2006.

[16] Mario Heiderich, Jörg Schwenk, Tilman Frosch, Jonas Magazinius, and Edward Z. Yang. mxss
attacks: Attacking well-secured web-applications by using innerhtml mutations. In Proceedings
of the 2013 ACM SIGSAC Conference on Computer and Communications Security, CCS ’13,
pages 777–788, New York, NY, USA, 2013. ACM.

[17] Lin-Shung Huang, Alexander Moshchuk, Helen J Wang, Stuart Schecter, and Collin Jackson.
Clickjacking: Attacks and defenses. In USENIX Security Symposium, pages 413–428, 2012.

[18] Luca Invernizzi, Stefano Benvenuti, Marco Cova, Paolo Milani Comparetti, Christopher
Kruegel, and Giovanni Vigna. Evilseed: A guided approach to finding malicious web pages.
In Proceedings of the 2012 IEEE Symposium on Security and Privacy, SP ’12, pages 428–442,
Washington, DC, USA, 2012. IEEE Computer Society.

[19] Martin Johns, Bastian Braun, Michael Schrank, and Joachim Posegga. Reliable protection
against session fixation attacks. In Proceedings of the 2011 ACM Symposium on Applied
Computing, pages 1531–1537. ACM, 2011.

[20] Alexandros Kapravelos, Chris Grier, Neha Chachra, Christopher Kruegel, Giovanni Vigna,
Vern Paxson, Dhilung Kirat, Giancarlo De Maio, Yan Shoshitaishvili, Gianluca Stringhini,
et al. Hulk: eliciting malicious behavior in browser extensions. In Proceedings of the 23rd
USENIX Security Symposium, pages 641–654, 2014.

[21] Or Katz. Detecting remote file inclusion attacks. White Paper. Breach Security Inc., May,
2009.

[22] Clemens Kolbitsch, Benjamin Livshits, Benjamin Zorn, and Christian Seifert. Rozzle: De-
cloaking internet malware. In IEEE Symposium on Security and Privacy, May 2012.

[23] Sebastian Lekies, Ben Stock, and Martin Johns. 25 million flows later: Large-scale detection
of dom-based xss. In Proceedings of the 2013 ACM SIGSAC Conference on Computer &
Communications Security, CCS ’13, pages 1193–1204, New York, NY, USA, 2013. ACM.

[24] Sebastian Lekies, Ben Stock, and Martin Johns. A tale of the weaknesses of current client-side
xss filtering. In Proceedings of BlackHat USA 2014, 2014.

[25] Lei Liu, Xinwen Zhang, Guanhua Yan, and Songqing Chen. Chrome extensions: Threat
analysis and countermeasures. In NDSS, 2012.

[26] Niels Provos Panayiotis Mavrommatis and Moheeb Abu Rajab Fabian Monrose. All your
iframes point to us. In USENIX Security Symposium, pages 1–16, 2008.

34

[27] Maliheh Monshizadeh, Prasad Naldurg, and VN Venkatakrishnan. Mace: Detecting privi-
lege escalation vulnerabilities in web applications. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer & Communications Security, pages 690–701. ACM, 2014.

[28] Top OWASP. Top 10–2010–the ten most critical web application security risks. The Open
Web Application Security Project, 2010.

[29] Bryan Parno, Jonathan M McCune, Dan Wendlandt, David G Andersen, and Adrian Perrig.
Clamp: Practical prevention of large-scale data leaks. In Security and Privacy, 2009 30th
IEEE Symposium on, pages 154–169. IEEE, 2009.

[30] Giancarlo Pellegrino and Davide Balzarotti. Toward black-box detection of logic flaws in web
applications. In Network and Distributed System Security (NDSS) Symposium, 2014.

[31] Paruj Ratanaworabhan, Benjamin Livshits, and Benjamin Zorn. Nozzle: A defense against
heap-spraying code injection attacks. In Proceedings of the 18th Conference on USENIX Se-
curity Symposium, SSYM’09, pages 169–186, Berkeley, CA, USA, 2009. USENIX Association.

[32] Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan Savage. Return-oriented program-
ming: Systems, languages, and applications. ACM Trans. Inf. Syst. Secur., 15(1):2:1–2:34,
March 2012.

[33] Gustav Rydstedt, Elie Bursztein, Dan Boneh, and Collin Jackson. Busting frame busting: a
study of clickjacking vulnerabilities at popular sites. IEEE Oakland Web, 2:6, 2010.

[34] Gustav Rydstedt, Baptiste Gourdin, Elie Bursztein, and Dan Boneh. Framing attacks on
smart phones and dumb routers: tap-jacking and geo-localization attacks. In Proceedings of
the 4th USENIX conference on Offensive technologies, pages 1–8. USENIX Association, 2010.

[35] Prateek Saxena, David Molnar, and Benjamin Livshits. Scriptgard: Automatic context-
sensitive sanitization for large-scale legacy web applications. In Proceedings of the 18th ACM
Conference on Computer and Communications Security, CCS ’11, pages 601–614, New York,
NY, USA, 2011. ACM.

[36] Hovav Shacham. The geometry of innocent flesh on the bone: Return-into-libc without function
calls (on the x86). In Proceedings of the 14th ACM Conference on Computer and Communi-
cations Security, CCS ’07, pages 552–561, New York, NY, USA, 2007. ACM.

[37] Sooel Son, Kathryn S. McKinley, and Vitaly Shmatikov. Diglossia: detecting code injection
attacks with precision and efficiency. In Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security, CCS ’13, pages 1181–1192, New York, NY, USA,
2013. ACM.

[38] Sooel Son and Vitaly Shmatikov. The postman always rings twice: Attacking and defending
postmessage in html5 websites. In NDSS, 2013.

[39] Trustwave SpiderLabs. The web hacking incident database. semiannual report. july to de-
cember 2010. Technical report, Technical report, Computer Science in Trustwave SpiderLabs,
2011.

35

[40] Ben Stock, Sebastian Lekies, Tobias Mueller, Patrick Spiegel, and Martin Johns. Precise client-
side protection against dom-based cross-site scripting. In 23rd USENIX Security Symposium
(USENIX Security 14), pages 655–670, San Diego, CA, August 2014. USENIX Association.

[41] László Szekeres, Mathias Payer, Tao Wei, and Dawn Song. Sok: Eternal war in memory. In
Security and Privacy (SP), 2013 IEEE Symposium on, pages 48–62. IEEE, 2013.

[42] Yusuke Takamatsu, Yuji Kosuga, and Kenji Kono. Automated detection of session fixation
vulnerabilities. In Proceedings of the 19th international conference on World wide web, pages
1191–1192. ACM, 2010.

[43] Mike Ter Louw and VN Venkatakrishnan. Blueprint: Robust prevention of cross-site scripting
attacks for existing browsers. In IEEE Symposium on Security and Privacy, pages 331–346,
2009.

[44] W3C. Web Services Glossary. http://www.w3.org/TR/ws-gloss/, 2014.

[45] Rui Wang, Shuo Chen, XiaoFeng Wang, and Shaz Qadeer. How to shop for free online–security
analysis of cashier-as-a-service based web stores. In Security and Privacy (SP), 2011 IEEE
Symposium on, pages 465–480. IEEE, 2011.

[46] Michael Weissbacher, Tobias Lauinger, and William Robertson. Why is csp failing? trends
and challenges in csp adoption. In Angelos Stavrou, Herbert Bos, and Georgios Portokalidis,
editors, Research in Attacks, Intrusions and Defenses, volume 8688, pages 212–233. Springer
International Publishing, 2014.

[47] Luyi Xing, Yangyi Chen, XiaoFeng Wang, and Shuo Chen. Integuard: Toward automatic
protection of third-party web service integrations. In NDSS, 2013.

[48] Dingjie Yang. Clickjacking: An Overlooked Web Security Hole.
https://community.qualys.com/blogs/securitylabs/2012/11/29/clickjacking-an-over looked-
web-security-hole, 2012.

36

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

14-10-2016
2. REPORT TYPE

 Technical Report
3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE

5a. CONTRACT NUMBER

FA8721-05-C-0002 & FA8702-15-D-0001

A Study of Gaps in Defensive Countermeasures for Web Security 5b. GRANT NUMBER

 5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

5d. PROJECT NUMBER

2486

K. Bauer, T. Hobson, H. Okhravi, S.C. Roberts, and W.W. Streilein

5e. TASK NUMBER

272

 5f. WORK UNIT NUMBER

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

AND ADDRESS(ES)

8. PERFORMING ORGANIZATION REPORT
 NUMBER

MIT Lincoln Laboratory

244 Wood Street

Lexington, MA 02420-9108

TR-1196

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)
Air Force Life Cycle Management Center (AFLCMC/AZS)

9

0

1

U

n

i

v

e

r

s

i

t

y

B

l

v

d

.

S

E

,

S

u

i

t

e

1

0

0

AFLCMC/AZS

20 Schilling Circle, Bldg. 1305, 3rd Floor

Hanscom Air Force Base

 11. SPONSOR/MONITOR’S REPORT

Bedford, MA 01731 NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release: distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

 Traditionally, simple defenses against web-based attacks, such as input sanitization, provide little protection against a motivated

attacker with simple evasion capabilities and often have impractically high false positive and false negative rates. More effective defenses

in this domain often either require significant modifications to servers and infrastructures, thus violating the federated model of such

networks, or they impose high computational or operator overheads. As a result, the domain of web-based attacks requires significant

research and development efforts to provide practical, effective defenses.

 In this report, we highlight some of the most important deployment challenges and gaps related to web-based defenses, which can be

used to guide future research and development in this area.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

17. LIMITATION

OF ABSTRACT

18. NUMBER

OF PAGES

19a. NAME OF RESPONSIBLE PERSON

a. REPORT

Unclassified
b. ABSTRACT

Unclassified
c. THIS PAGE

Unclassified
Same as report 48 19b. TELEPHONE NUMBER (include area

code)

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

This page intentionally left blank.

	TR-1196, A Study of Gaps in Defensive Countermeasures for Web Security
	Executive Summary
	Table of Contents
	1. Introduction
	2. Methodology
	3. Gaps and Research Directions
	Summary and Conclusion
	Appendix A: Summary of Deployment Gaps
	References

